Bits, bytes and digital information

COMPSCI111/111G

Today's lecture

- Understand the difference between analogue and digital information
- Convert between decimal numbers and binary numbers

Analogue vs digital information

- Information in the real world is continuous
- Continuous signal

- Information stored by a computer is digital
- Represented by discrete numbers

Encoding information

- Real world information is stored by a computer using numbers
- Visual information

Image

Pixels

11111111111111111111111 01111111111111111111111 00001111111111111111111 00000011111111111111111 00000000011111111111111 44444000001111111111111
75444000000011111111111 55554401000000111111111 33367544000000011111111 22283554444000000111111 99928357544000000011111 99999233657504000001111 99999983666554400000011 99999928338674400000001

1. Give each pixel colour a number.
2. Let the computer draw the numbers as coloured pixels (eg. black $=0$).

Encoding information

- Sound information

1. Give each sample a number (height of green box).
2. Let the computer move the loudspeaker membrane according to the samples.

Numbers and Computing

- Numbers are used to represent all information manipulated by a computer.
- Computers use the binary number system:
- Binary values are either 0 or 1 .
- We use the decimal number system:
- 0 to 9 are decimal values.

How do we represent data in a computer?

- At the lowest level, a computer is an electronic machine.
- works by controlling the flow of electrons
- Easy to recognize two conditions:

1. presence of a voltage - we'll call this state " 1 "
2. absence of a voltage - we'll call this state " O "

- Could base state on value of voltage, but control and detection circuits much more complex.
- compare turning on a light switch to measuring or regulating voltage

Storing Decimal Numbers in a Computer

- Series of dials:
- Each dial goes from 0 to 9.
- Information is stored digitally:
- Finite number of states - 10 per dial.
- No in-between states.
- Decimal number system:
- $1^{\text {st }}$ dial from right: 10^{0}
- $2^{\text {nd }}$ dial from right: 10^{1}
- $3^{\text {rd }}$ dial from right: 10^{2}
- etc...

100's 10's

$$
6 \times 10^{2}+3 \times 10^{1}+8 \times 10^{0}=638
$$

Exercises

The following two questions relate to dials that have 10 different states, as discussed in the previous slide.

- Given a machine that uses 4 dials, how many different numbers can we represent?

10000

- If we want to represent 256 different values, how many dials do we need?

3 dials

Switches

- A dial is complicated.
- Each dial has 10 different states (0-9).
- Physically creating circuits that distinguish all states is complicated.
- Would need to distinguish 10 different strengths of electricity (voltages).
- Switches are simple.
- Each switch is off or on (0 or 1).
- Physically creating the circuits is easy.
- Switch off: electrical current cannot flow.
- Switch on: electrical current can flow.

Computer is a Binary Digital System

Digital system:

- finite number of symbols

- Basic unit of information is the binary digit, or bit.
- Values with more than two states require multiple bits.
- A collection of two bits has four possible states: 00, 01, 10, 11
- A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits has 2^{n} possible states.

Bits and Bytes

- Each binary number is known as a Binary digIT, or bit.
- A bit can be either a 0 or a 1

- Bits are used in groups.

3 bits

2 bits
- A group of eight bits is referred to as a byte.

Using Binary Numbers

How many different values／states can we have with：

1 bit： 2 bits： 3 bits：

50	al 300	a 4 a 000	vad 100
	a）＊01	a ${ }^{\text {y }}$	＊迷101
	＊ 10	atalo	＊\＃ 110
	＊＊ 11	日者）11	111

Exercises

- How many different values can we represent with a byte?

$$
256
$$

- If we want to represent 30 different values, how many bits would we need?

5 bits

Integers

- Non-positional notation
- could represent a number (" 5 ") with a string of ones (" 11111 ")
- Weighted positional notation
- like decimal numbers: " 329 "
- " 3 " is worth 300 , because of its position, while " 9 " is only worth 9

Integers (cont.)

- An n-bit unsigned integer represents any of 2^{n} (integer) values: from 0 to $2^{n}-1$.

2^{2}	2^{1}	2^{0}	Value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Converting binary to decimal

- 110

$$
\begin{aligned}
& 1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& 4+2+0=6
\end{aligned}
$$

Exercises

- What is the decimal equivalent of 101111 ?

$$
47
$$

- What is the binary equivalent of 123 ?

1111011
"There are 10 kinds of people in the world: those who understand binary, and those who don't".
"There are 10_{2} kinds of people in the world: those who understand binary, and those who don't".
"There are 10_{10} kinds of people in the world: those who understand binary, and those who don't".
"There are $10_{\text {two }}$ kinds of people in the world: those who understand binary, and those who don't".

Prefixes

- A group of 8 bits is a byte
- A group of 4 bits is a nibble
- Bytes are the common unit of measurement for memory capacity
- There are two sets of prefixes:
- Decimal
- Binary

Decimal prefixes

$10^{\text {n }}$	Prefix	Symbol	Decimal
1	none		1
10^{3}	kilo	K	1000
10^{6}	mega	M	$1,000,000$
10^{9}	giga	G	$1,000,000,000$
10^{12}	tera	T	$1,000,000,000,000$
10^{15}	peta	P	$1,000,000,000,000,000$
10^{18}	exa	E	$1,000,000,000,000,000,000$
10^{21}	zetta	Z	$1,000,000,000,000,000,000,000$

Binary prefixes

$2^{\text {n }}$	Prefix	Symbol	Decimal
2^{0}	none		1
2^{10}	kibi	Ki	1024
2^{20}	mebi	Mi	1,048,576
2^{30}	gibi	Gi	1,073,741,824
2^{40}	tebi	Ti	1,099,511,627,776
2^{50}	pebi	Pi	1,125,899,906,842,624
2^{60}	exbi	Ei	1,152,921,504,606,846,976
2^{70}	zebi	Zi	1,180,591,620,717,411,303,424

Prefixes in Computer Science

- Both decimal and binary prefixes are used in Computer Science
- Decimal prefixes are preferred because they are easier to calculate, however binary prefixes are more accurate

Binary prefix	Decimal prefix	Value (bytes)
8 bits	1 byte	same
1 KiB $\left(1 \times 2^{10}\right.$ bytes $)$	1 KB $\left(1 \times 10^{3}\right.$ bytes $)$	$1024 \neq 1000$
1 MiB $\left(1 \times 2^{20}\right.$ bytes $)$	1 MB $\left(1 \times 10^{6}\right.$ bytes $)$	$1,048,576 \neq 1,000,000$

Example - hard disk sizes

- A 160 GB hard disk is equivalent to 149.01 GiB
- $160 \mathrm{~GB}=160 \times 10^{9}$
- $149.01 \mathrm{GiB}=\left(160 \times 10^{9}\right) \div 2^{30}$

Exercises

- Which has more bytes, 1 KB or 1 KiB ?

$$
1 \mathrm{~KB}=1000 \text { bytes while } 1 \mathrm{KiB}=1024 \text { bytes }
$$

- How many bytes are in 128MB?

$$
128 \times 10^{6}=128,000,000 \text { bytes }
$$

Summary

- Computers use the binary number system
- We can convert numbers between decimal and binary
- Decimal prefixes and binary prefixes are used for counting large numbers of bytes

Apple logo myth

"There's no truth in that rumor, but by God I wish it were true."

- Steve Jobs

